
sdOffice – Page 1

sdOffice™

Automate Office From Anywhere

Version 1.0

©2001 Synergetic Data Systems Inc. All rights reserved.

sdOffice – Page 2

Table of Contents

OVERVIEW .. 4

INSTALLATION AND LICENSING... 6

SOCKET INTERFACE.. 8

TCP/IP SERVER .. 11

SERVER CONFIGURATION... 13

BBX AND PROVIDEX INTERFACE .. 15

DDE INTERFACE.. 18

SDRUN INTERFACES .. 19

ADO AUTOMATION... 21

MAPI AUTOMATION... 23

MICROSOFT EXCEL AUTOMATION.. 25

MICROSOFT OUTLOOK AUTOMATION ... 35

MICROSOFT WORD AUTOMATION... 42

ABOUT THE SAMPLES ... 51

SAMPLE: ADO DATABASE MANIPULATION (S_ADO.TXT)............................. 52

SAMPLE: EXCEL CALCULATION ENGINE (S_EXCEL2.TXT) 53

SAMPLE: EXCEL FORMATTING (S_EXCEL1.TXT) .. 54

SAMPLE: EXCEL REPORT (S_EXCEL3.TXT) ... 55

SAMPLE: EXCEL CHARTING (S_EXCEL4.TXT) .. 57

SAMPLE: MAPI EMAIL SUBMISSION (S_MAIL1.TXT) 58

SAMPLE: OUTLOOK ADD APPOINTMENT (S_APPT1.TXT)............................. 59

SAMPLE: OUTLOOK ADD CONTACT (S_CONT1.TXT)...................................... 60

SAMPLE: OUTLOOK EMAIL (S_MAIL.TXT)... 61

sdOffice – Page 3

SAMPLE: OUTLOOK READ APPOINTMENTS (S_APPT2.TXT) 62

SAMPLE: OUTLOOK READ CONTACTS (S_CONT2.TXT)................................. 63

SAMPLE: WORD DOCUMENT FORMATTING (S_WORD1.TXT) 64

SAMPLE: WORD MAIL MERGE (S_WORD2.TXT)... 66

COLORS.. 68

PAPER BINS ... 69

PAPER SIZES ... 70

SENDKEYS CHARACTERS .. 71

sdOffice – Page 4

Overview

sdOffice is a Windows-based product that enables automation of Microsoft
Office programs from software environments that don’t support Microsoft’s
ActiveX Automation standard. Through the use of platform-independent TCP/IP
sockets, or the older, more widely supported Windows DDE standard, sdOffice
enables advanced automation tasks to be developed in most any language, and
executed on most any platform.

For example, a customer maintenance program, running in a terminal emulator
window, on a Linux system could start Microsoft Word on the user’s (or another
user’s) workstation, open a letter-head template, write a letter incorporating the
customer address and balance information, and print, fax, or email the letter.

Another example is the need to export data to a file and import it into Microsoft
Excel. This multi-step process results in an unformatted worksheet. With
sdOffice, it is possible for an external program to launch Excel, create a new
worksheet, add the data and/or formulas, add formatting, and even sort or
subtotal the data.

More examples might be to synchronize a user’s Outlook Contacts database with
an accounting system master file, or post a reminder to run a report at a future
date in his or her Outlook Calendar.

By providing a concise command-style interface, sdOffice is very easy to learn.
Common tasks are simple to develop and execute.

sdOffice Provides Multiple Programming Interfaces

Socket Interface
For some host environments, such as Unix or Linux, sdOffice provides a TCP/IP
server that runs on a Windows workstation, accepting automation commands
over a socket from any TCP/IP-enabled program. Automation tasks can be
written in Java, Perl, Tcl, or even Telnet.

When using the socket interface, sdOffice is started as a TCP/IP server on the
user's workstation. It listens for connections from another (or the same) system,
and provides a simple command-response interface that is easy to program and
even easy to use via a telnet session.

DDE Interface
Some Windows programming languages are able to communicate with other
Windows tasks via DDE, but not ActiveX automation. sdOffice provides a DDE
interface for those languages.

sdOffice – Page 5

BBx and ProvideX Interface
The initial vision for sdOffice was as a set of Visual PRO/5 and ProvideX
programs designed to manage Microsoft Office via DDE. These programs have
been enhanced to support both DDE and socket communication with sdOffice,
providing and easy CALL interface for automation tasks.

In addition to the above low-level interfaces, you can use one of the sdRun
interfaces, which accept a command file as input and manage the server
communication automatically.

sdOffice is a trademark of Synergetic Data Systems Inc. Other product names used herein may be trademarks or
registered trademarks of their respective owners.

sdOffice – Page 6

Installation and Licensing

Installation
sdOffice is installed on each workstation by running the setup.exe program from the CD's
sdoffice/win directory, or by running the self-installing executable downloaded from SDSI's
website. The installation is controlled by InstallShield, an industry-standard installation utility.

Once installed, there will be a Startup menu launch of the server when the user logs into the
workstation, and also a manual startup available from the desktop or the Start menu. sdOffice
can be configured to only be started manually, and can be hidden automatically when started
from the Startup menu. When hidden, you can restore or shutdown the server from the system's
task tray by clicking the small sdOffice icon.

In the CD's sdoffice/unix directory, and also included in the unix.tar file in the sdOffice installation
directory, are several files that are of benefit to Unix or Linux developers. The tar archive can be
copied to a Unix system directory and installed with the command tar xvf unix.tar. The files
include the perl script sdrun.pl, the sample command files s_*.txt, and documentation in PDF
format.

Licensing
If sdOffice will accept connections via TCP/IP sockets, then any system on your network can
control an sdOffice session on any workstation. It is possible, in cases where no user interaction
is required, to develop automations using sdOffice on one workstation to service the entire
network. sdOffice can therefore be licensed one of two ways: as a workstation or as a server.

License keys are character strings that are entered into the sdOffice configuration dialog. The
license key is based upon the computer's system ID, the version of sdOffice, and the mode of
operation. License keys are purchased from the dealer or publisher. Upon purchase, you will
receive an order number and PIN code that can be used to obtain one or more license keys from
website http://synergetic-data.com. If the workstation has access to the Internet, then the Get
License button on the configuration dialog can be used to access the proper web page.

If a system has been licensed and then the system ID changes, sdOffice will run an additional 10
days in workstation mode before reverting to demo mode. Contact the dealer or publisher to
obtain a new license key during that period.

Demo Mode
After installation, sdOffice operates in demo mode. In this mode, random letters are replaced
with asterisk (*) characters when reading and writing data. Once a valid license key is entered
into the configuration, then sdOffice starts operating in one of the two license modes. Demo
mode can emulate either Workstation mode or Server mode, so testing of either license model is
possible. If the license key is set to "demo", then sdOffice will operate in workstation mode. For
server mode demo operation, set the license key to "demoserver".

Workstation Mode
A workstation license will accept any number of local connections, either DDE or socket
connections to address 127.0.0.1. In addition, it will accept one external socket connection at a
time.

Server Mode
A server license, like the workstation license, will accept any number of local connections, and
will also support any number of simultaneous external connections.

sdOffice – Page 7

Steps to License sdOffice
The first step to licensing sdOffice is to order a license or license pack from the dealer or
publisher. You will receive an order information sheet by email, fax, or standard mail, containing
an order number and pin number, which are used to get a license key from the Internet using a
web browser such as Microsoft Internet Explorer or Netscape Navigator. The order information
sheet contains detailed instructions, but the basic steps are as follows:

Use the sdOffice Configure button to view the configuration window. This window displays the
system ID.

The order number, pin number, and system ID are used together to obtain a license key via a
web browser. The website is http://synergetic-data.com; navigate to the sdOffice page, then the
Licensing page. If the sdOffice machine can connect to the Internet, then you can use cut
(Control-C) and paste (Control-V) keystrokes to copy the system ID to the browser, and the
license key back to the configuration window. You can also launch your browser automatically
with the system ID information pre-filled out using the Get License button on the configuration
window.

sdOffice – Page 8

Socket Interface

When sdOffice is installed, it is set up as a TCP/IP server on the workstation’s
Startup menu, so it is automatically launched when the system is started. It
listens on a port, by default 6114, for connections from client tasks. Once a
connection is made, sdOffice responds with the string "sdOffice (tm) <version> -
from <client address>", and a conversation begins. The client sends commands
followed by LF or CR-LF characters (LF=ASCII 10, CR=ASCII 13). sdOffice
performs the requested command and returns a response. The response is
either OK<CR-LF> or Error: msg<CR-LF>.

Upon opening the socket, the client should read the socket until a line starting
with "sdOffice" is encountered. This will normally be the first line, and will clear
the socket input buffer in preparation for the conversation.

The first command sent by the client needs to be an application invocation
command: Excel, Word, Outlook, MAPI, or ADO (case-insensitive). Any other
command will receive an error response. This command will start the
appropriate application on the sdOffice system and await further commands.
Once all commands have been entered and you are ready to close the session,
enter the command Quit<CR-LF> to close the socket.

If a command requires parameters, then follow it with a space and the
parameters. In some cases, multiple parameters are accepted or required.
These are entered as a series of comma-separated options, each a name or
name=value pair. If a value contains a comma, it must be quoted.

Some commands may require long parameter strings. If the entry or
programming of such long strings is difficult, you can use the end-of-line
continuation character, a backslash (\). sdOffice interprets a trailing \ character
to indicate that more command data is coming on the next line. For example,
this series of commands is interpreted as a single "write" command (note the use
of a space before each \, to prevent words from combining together):

write This is the start of a paragraph, \
this is still more paragraphs text, \
and this is end of the line.

In addition, parameter may require embedded CR-LF data. You can use the
character sequence \n to indicate a CR-LF sequence, and the character
sequence \t for tabs (ASCII 9). For example, a Word bullet list is added with
embedded CR-LF sequences:

bulletlist Item number 1\nItem number 2\nItem number 3

sdOffice – Page 9

Here is a simple example using telnet to demonstrate the conversation:

$ telnet 1.1.1.1 5000
Trying 1.1.1.1...
Connected to nt1.
Escape character is '^]'.
sdOffice (tm) - from 1.1.1.2
word
OK
newdoc
OK
font name=Arial,size=14,bold
OK
write Now is the time for all good men to come to the aid
of their country.
OK
print
OK
quit
Connection closed by foreign host.

Some commands cause sdOffice to return data. These commands all start with
the letters "Get" The data returned may contain CR-LF sequences (the
paragraphs of a Word document, for example), so all Get commands are
followed by single line with just a period (.) to indicate the end of the data. When
reading the response, be sure to read through a line containing a .<CR-LF> ,
discarding the final line, to ensure that all the data is read. Note that if you
encounter a line with two periods (..<CR-LF>), this indicates that the line is not
the end of the transmission, but in fact a line containing a single period.

One of the challenges of using sdOffice in a network environment, with a Unix
host executing an application via telnet or other network protocol, is determining
the user’s workstation computer. The Unix operating system provides
workstation host name information with the "who" command. There are two
variants of who. Most provide hostname information inside parenthesis, while
SCO adds the hostname as the sixth element of who output when the -x
argument is added. Here are shell command lines that set the variable host
correctly:

SCO: host=`who -mx | tr -s " " | cut -f6 -d" "`

Other: host=`who -m | sed -e ‘s/.*(//; s/)//’`

The Perl programs provided for socket communications, sdrun.pl and sdpipe.pl,
both use the environment variable $SDHOST, if available, rather than the who
command. This provides a method to communicate to a sdOffice server that is

sdOffice – Page 10

not running on the user's workstation, and also helps in cases where the who
command returns incorrect information.

sdOffice – Page 11

TCP/IP server

The sdOffice server is launched from the user's desktop, and operates as a TCP/IP server
application, listening on a configured port (default=6114) for connections from client applications.
These clients converse with the server using sdOffice's socket interface. Connects and
disconnects are displayed in the scrolling text log. Optionally, commands issued by clients can
also be logged.

When started, the server will display the startup time, listening port, optional binding information,
and the license mode (demo, workstation, or server). As connections are made, external
connections (to other than the localhost 127.0.0.1 address) are counted and displayed in
parentheses. Workstation licenses support one external connection at a time, while server
licenses support any number of external connections.

Hide
The Hide button will hide the server without shutting it down. It will still listen for, and process,
connections. To force the server to be visible again, use the system tray icon on the Windows
task bar. Double-click the icon, or right click and choose Restore from the popup menu.

About
The About button displays version and copyright information about sdOffice.

Help
The Help button displays this help screen.

Configure
The Configure button displays the configuration dialog. If you change the configuration, you will
be prompted to restart the server when you exit.

Shutdown
The Shutdown button, or closing the window, will stop the server, after a verification prompt.
Shutting down the server will close any connections that are active without warning and without
completing any pending commands.

sdOffice – Page 12

Logging
The Clear Log button will clear the scrolling text log.

If the Log Detail check box is checked, then all commands are displayed in the log. Otherwise,
only connects and disconnects are displayed. When detail is shown, any character codes outside
the ANSI printable range (below ANSI 32) are displayed in angle brackets. <9> would represent
a tab character, for example. The log is limited to 1000 lines; prior lines are removed as lines are
added.

sdOffice – Page 13

Server Configuration

The server is configured by clicking the Configure button while running the TCP/IP server, or by
running the Configure sdOffice option from the Start menu. This displays the configuration dialog
window, where you can specify information on server operation and licensing.

System ID
The System ID is used for licensing purposes. Each workstation has a unique ID derived from
the Windows serial number and the hard disk serial number. This information can't be changed.

Get License Button
Once you have purchased a license or license pack, you will receive an order number and PIN
code. With this information, and the system ID information shown, you can obtain a license key
via a web browser. If the system running sdOffice is connected to the Internet, clicking this button
will launch your browser, showing the sdOffice licensing web page with the system ID pre-
entered.

License Key
The License key is linked to the system ID to enable normal operation of the server. Until a valid
license key is entered, sdOffice will operate in demo mode. Demo mode causes random
characters to be replaced with asterisks (*) when reading and writing data to the various
automation tasks. License key values used for demo mode are "demo" and "demoserver". Any
other key, if not valid for the system on which sdOffice is running, will cause a warning message
to display and demo mode to be invoked.

Listen Port
The Listen port is the TCP/IP port on which sdOffice listens for connections. All TCP/IP servers
are assigned a listening port. Ports below 1024 are reserved for well-known applications, such as
http (the Web) and smtp (email). The default sdOffice port is 6114, but you can modify it to any
available port from 1024 thorugh 65535. Client connections need to specify this port when

sdOffice – Page 14

connecting to the server.

Bind to IP
Normally, sdOffice listens to any IP address recognized by the machine. Machines can be
configured with aliasing to support multiple IP addresses. By entering an IP address here, you
are instructing sdOffice to bind to that address, and ignore connection attempts to any other
address the machine might have. If you leave this entry blank, then sdOffice will respond to any
connection attempt to the correct listen port number, regardless of the IP address of the
connection.

Access Security
You can restrict access to specific IP addresses or wildcards by checking the "Restrict access ..."
checkbox. Then add and remove addresses to the associated list box. To add an address or a
wildcard, fill in Add/Remove box with an address in the format n.n.n.n and click the Add button.
To remove an entry, select it in the list box and click the Remove button.

Address wildcards can use a * character in place of a number. For example, "10.20.30.*" would
allow all addresses in the block 10.20.30.1 through 10.20.30.255 to access the server.

Start Options
The sdOffice server is configured during installation to automatically start when the user logs into
the workstation. This action can be disabled by unchecking the "Enable automatic start on login"
checkbox. In addition, when sdOffice starts in this manner, you can indicate it should run hidden
by checking the "Hide on automatic start" checkbox.

A desktop shortcut is also created during installation. Starting sdOffice with that shortcut will
always make the server visible.

sdOffice – Page 15

BBx and ProvideX Interface

sdOffice includes several BBx and ProvideX programs that can simplify the
management of a sdOffice session. These programs are CALLed modules that
initiate and manage the communication with sdOffice automatically.

There is one program module for each automation type. For example,
sdofc_e.bb manages and Excel session under BBx; sdofc_w.pv manages a
Word session under ProvideX. The BBx programs are compatible with BBx4,
PRO/5 and Visual PRO/5 versions of BBx. Note that the Unix versions in both
languages communicate with sdOffice exclusively via a socket. The Windows
versions in both languages will communicate via local DDE, unless the global
string "$sdhost" is defined or the environment variable SDHOST is defined, in
which case a socket is used. Visual PRO/5 versions prior to 2.2 cannot use a
socket, and are therefore only capable of communicating with sdOffice via local
DDE.

Each sdOffice program uses a simple, three-value argument list, call
"sdofc_e.bb", cmd$, response$, errmsg$ for example. In each case, cmd$ is
a command value and optional parameters, response$ returns any results from
"get" style commands, and errmsg$ returns a null or an error message, if an
error is encountered. Unlike the lower-level socket or DDE interfaces, there is no
need to initially specify which application to automate (Word, Outlook, Excel,
etc.), as the program CALLed selects and initializes the correct application
automatically.

In many cases, the parameter portion can contain a number of name=value
pairs. Each pair is delimited with a comma, and each value may be quoted if it
contains commas. For example, to set a cell font in Excel, you would use a
command like this:

call "sdofc_e.bb","format
col=1,row=1,font=Arial,size=14.5,bold",response$,errmsg$

The first CALL to one of the sdOffice programs will open a channel to the
sdOffice server in either DDE or socket mode, and issue the correct initialization
command (word, excel, mapi, etc.). The type of channel is determined by the
environment:

 In either language, if stbl("$sdhost") or gbl("$sdhost") or the environment

variable SDHOST is defined, then a socket channel is opened to the identified
host IP address or name. In PRO/5 or Visual PRO/5 2.2 or higher, socket
device N0 is opened (it must be defined in your config.bbx file). In lower
releases of PRO/5 or BBx4 on Unix, a pipe to "|perl sdpipe.pl" is opened.

sdOffice – Page 16

Visual PRO/5 prior to revision 2.2 cannot use a socket.

 In either language on a Windows workstation, if the above values aren't set, a
DDE channel is used, requiring that sdOffice be installed on the local
workstation. The sdofc_*.bb/pv programs must reside in the same directory
as the sdofc.exe program, as the path to the sdofc.exe executable is derived
from the program name called.

 In PRO/5 on a Unix system, if the above values aren't set, a pipe is used to
open a socket channel via sdpipe.pl, which will attempt to determine a
workstation hostname via the who command.

 In ProvideX, if the above values aren't set, either on Unix or in a WindX
session, a socket channel is opened. On Unix, the who command is used to
determine the user's workstation hostname. Under WindX, the WindX
workstation hostname is used., so sdOffice would need to be running on the
WindX workstation.

If a socket channel is opened, it will attempt to resolve the local workstation
address using WindX.utl or Unix who commands, unless you specify an address
by setting the global string (STBL or GBL) "$sdhost", or the environment variable
"SDHOST", to an IP address or domain name of a sdOffice workstation. Further,
it will use port 6114, unless you specify a different port in the global string
"$sdport".

The channel must remain open, or the session terminates, along with the ActiveX
Automation session. When you are ready for the session to end, you can call the
program with cmd$="close", and the session will terminate. As an alternative, a
Business Basic BEGIN or END will also close channels and terminate the
session.

The sdofc.bb/pv programs use timeout error handling when communicating with
the server, both under socket and DDE modes. The default timeout value for any
operation is 30 seconds. You can adjust this value by setting the STBL (GBL
under pvx) value for $sdtim to the number of seconds desired. For example,
trash$=stbl("$sdtim","60") would establish 60 seconds as the timeout value
before an error is returned.

Usage note: on Windows, the default sdOffice directory is "C:\Program
Files\SDSI\sdOffice". If you include this in your BBx or ProvideX search prefix,
the space in "Program Files" acts as a path delimiter and therefore doesn't work.
Be sure to use the MS-DOS path name for "Program Files", which is generally
"PROGRA~1". To verify, use the MS-DOS dir command from the C:\ directory.

There are five sdOffice programs. Here is a summary of each:

sdOffice – Page 17

call "sdofc_d.bb|pv",cmd$,response$,errmsg$
This program automates ADO (database) tasks through SQL commands. With
this object, you can read and write data in external databases.

call "sdofc_e.bb|pv",cmd$,response$,errmsg$
This program automates Excel, providing read, write, and formatting capabilities.
You can open existing workbooks, create new workbooks, add embedded charts,
manage worksheets and their contents, and print or save the results.

call "sdofc_m.bb|pv",cmd$,response$,errmsg$
This program automates MAPI (email messaging) tasks. You can send email to
any number of recipients. The mail can include attachments.

call "sdofc_o.bb|pv",cmd$,response$,errmsg$
This program automates Outlook, managing appointments, contacts, email, and
tasks. Date-oriented information can be used to automate appointment and task
records. Master file data can be synchronized with Outlook contacts, and email
can be sent using the Outlook address book. Note that email can also be sent
using MAPI automation.

call "sdofc_w.bb|pv",cmd$,response$,errmsg$
This program automates Word, providing read, write, and formatting capabilities.
Use it to open or create Word documents, such as writing letters or performing
mail merge functions from within your application.

Each of these programs internally calls sdofc.bb|pv. That program should never
be called directly.

sdOffice – Page 18

DDE Interface

In the local Windows environment, it is possible to communicate with sdOffice via Dynamic Data
Exchange (DDE) rather than via the socket interface. For languages that don't support sockets,
but do support DDE, or for Windows programmers who are more familiar with DDE and whose
applications won't need to work across a network, the DDE interface may be preferable. In this
mode, sdofc.exe is started with two arguments, and it then operates as a DDE server waiting for
a client to connect.

To start sdofc.exe as a DDE server, you must launch it in the following format:

sdofc.exe type id

The first parameter is an automation type, which can be word, excel, outlook, mapi, or ado. The
second parameter is a unique numeric ID code, typically set to a process ID by the executing
task.

DDE applications are identified by an Application name and a Topic. When using sdOffice, the
Application name is "sdOffice", the Topic is "sdofc_id", where id is the value given on the
command line. By using a unique value for a topic, the user can potentially have several DDE
sessions operating at the same time.

Once a DDE session is opened, the two applications can exchange data through Items, and the
client application can request the server execute a command.

There are two items used by a sdOffice DDE server, "Dat" and "ErrMsg". Dat is used to provide
parameters for commands and to receive responses, while ErrMsg is used to report errors back
to the client. The command itself is sent via an Execute command. This differs from the socket
interface, in which both the command and its parameters are sent together in a single transaction,
separated by a space.

Here, therefore, is some pseudo-code of a DDE conversation:

id$=str(handle) (some unique value)
run "sdofc.exe word "+id$
repeat until successful:
 ddeopen (1) "sdOffice|sdofc_"+id$

execute(1)"newdoc" (no parameters needed)

writeitem(1, item="dat")"Dear Kiki,\n\nI think you're cute." (parameters for next command)
execute(1)"write"

If execute results in an error:
 readitem(1,item="errmsg")errmsg$

If lowercase(command) starts with "get":
 readitem(1,item="dat")response$

Repeat commands until done.

close(1)

sdOffice – Page 19

sdRun Interfaces

sdOffice comes with a series of programs designed to process command files, simplifying the
communication with sdOffice by allowing a developer to create a text file containing commands
and then process the commands automatically. While there are no programming type features
like looping constructs, variables, or conditionals, in many cases these interfaces will satisfy the
needs of a project and will save the programmer the time of developing the communication layer.
And for Perl or Business Basic programmers, the source code can be useful for seeing how to
manage the communications.

The programs are:

sdrun.bb PRO/5 CALLable program
sdrun.pv ProvideX CALLable program
sdrun.pl Perl script program
sdrun.exe Windows 32-bit executable

Examples of command files can be found in the sdOffice directory, names s_*.txt. A command
file always starts with an application name, such as "word", "excel", or "mail". Following this line
are any number of commands and associated parameters. Comments can be interspersed as
lines starting with #.

To execute the PRO/5 or Providex programs

call "sdrun.bb|pv", CommandFile$, ServerIP$, ServerPort$, Response$, Errmsg$

CommandFile$ is the command file path name to process.

ServerIP$ and ServerPort$ identify the server name (by IP address or hostname) and listening
port. The default values are taken from the environment, and in cases where DDE will be used,
these values are ignored. See the Visual PRO/5 and ProvideX interface page for more details.

Response$ will contain all the reponses returned by Get style commands in the command file.
Multiple responses will be delimited with ASCII 0 characters.

Errmsg$ will return any error message encountered. If a command encounters an error, the
remainder of the command file isn't processed, and the error message is returned immediately.

To execute the Perl program

perl sdrun.pl CommandFile {ServerIP {ServerPort}} {>ResponseFile} {2>ErrorFile}

CommandFile, the first argument, is required, and is the path to the command file.

ServerIP and ServerPort are optional arguments to specify the server IP address or hostname,
and listening port. If they are not supplied, then defaults are used, taken from the environment
variable SDHOST, or who command, and the environment variable SDPORT or port 6114. The
perl program, unlike the PRO/5 or ProvideX programs, always uses the socket interface.

If any get-type commands are issued, the responses are sent to STDOUT. You can redirect the
responses to a file rather than the terminal using ">" redirection. If there are multiple get-type
commands, a line "<< multiple response break >>" will appear between each result set.

sdOffice – Page 20

If any errors are encountered, the error message is sent to STDERR and the job exits
immediately. You can redirect this output with "2>". Normally, STDERR is routed to the terminal.

To execute sdRun.exe

sdrun CommandFile {ServerIP {ServerPort {ResponseFile {ErrorFile }}}}

CommandFile, the first argument, is required, and is the path to the command file.

ServerIP and ServerPort are optional arguments to specify the server IP address or hostname,
and listening port. If they are not supplied, then the defaults are localhost and 6114, respectively.

If any get-type commands are issued, the responses are normally displayed in a message box.
You can direct the responses to a file using the ResponseFile argument as a file path. If there
are multiple get-style commands, their respective responses will be delmited with formfeed
(ASCII 12) characters.

If any errors are encountered, normally an error message window is displayed. You can direct
this output to a file with the ErrorFile argument as a file path. In either case, the job exits
immediately

Note that the arguments are positional. To name a ResponseFile, for example, you must also
name the ServerIP and ServerPort.

sdOffice – Page 21

ADO Automation

Microsoft's Active Data Object protocol is a database access protocol that
provides access to local and remote databases via ODBC and OLE DB
providers. sdOffice provides a simple interface to ADO, providing access to
database table structures and SQL commands. Using this object requires a
knowledge of SQL, as that is how both read and write access to databases is
performed.

ADO is installed with a number of Microsoft products, such as SQL Server, IIS,
and Internet Explorer. If your system doesn't have ADO, or has an out-of-date
version, you can download MDAC (Microsoft Data Access Components) from
http://www.microsoft.com/data. This will install a complete set of ADO, OLE DB,
and ODBC components with coordinated and compatible versions.

After the ADO object is started, you need to connect to a database using the
connect command. Once connected, you can retrieve information about tables
or table columns using the gettables and getcolumns commands.

SQL commands can be executed for reading and writing data, or to manipulate
database structures, assuming the session user has proper permissions. The
execute command executes a SQL command, while the getexecute executes a
SQL command and returns the number of rows affected. In either case, if the
SQL command returns rows of data, the getrow and getrows commands can be
used to retrieve the data. The getcols command returns a list of field names from
the last executed SQL command.

Commands and parameters

Connect connectstring
Connects to a database in preparation for processing. Connect strings are
passed to the database driver for parsing. They generally contain a data source
name, a user ID, and a password. In some cases there may be no user or
password required (an local Access database, for example). A database
adminstrator should be able to provide the proper connection string for sdOffice
sessions. Here are some examples:

Driver={SQL Server};server=bigsmile;uid=sa;pwd=pwd;database=pubs
DSN=Pubs;UID=sa;PWD=pwd
Data Source=Pubs;User ID=sa;Password=pwd

Close
Closes the open connection.

CloseRS

sdOffice – Page 22

Closes an open record set derived from the last execute or getexecute command. Close a
record set to regain data manipulation access to a table.

Execute SQL command
Executes the SQL command given. If the command returns rows, such as a SELECT statement,
then subsequent getrow and getrows commands will return the data, and the getcols command
will return a list of column names for the data.

GetCols
Returns a list of column names associated with the last execute or getexecute command. The
column names are returned in the same order as the data in a getrow command.

GetColumns tablename, wildcard, columnnames
Returns the columns for a given table. The column records shown are defined by the wildcard.
For example, getcolumns customers,*sales will show all columns ending with "sales" in the
table "customers". The data returned included a header row of column names followed by any
number of rows with column data. The columns shown, such as name, description, data type,
and so on, can be specified by listing column names separated by commas. To see a list of valid
columns, issue a command that will return no rows, such as getcolumns customers,xxx. A
heading row will be followed by at most one row of column data.

The command getcolumns products,*,column_name,data_type,numeric_precision will return
a list of columns in the "products" table, with each row containing the column name, data type,
and precision.

GetExecute SQL command
This is identical to the execute command, except that the number of rows affected is returned.
The count of affected rows is normally only returned from SQL commands that update data, such
as INSERT commands.

GetRow
Returns the data from the next row returned from the last execute or getexecute command. The
columns returned are determined by the content of the SQL command executed. Each column is
separated by the current separator, which defaults to a comma. Any field data that contains the
delimiter is quoted.

If the end of the rows is reached, then a single asterisk (*) is returned.

GetRows
Returns all remaining rows available from the last execute or getexecute command. The rows
are prefixed by a header row containing column names.

GetTables wildcard,columnnames
Returns a list of tables whose names match the wildcard. The default wildcard is *, which
matches all table names. Following the wildcard may be one or more column names separated
by commas. If no column names are provided, then all columns are returned for the tables. The
column names are used as headers in the first row returned, so an easy way to see a list of valid
column names is with a command that returns no tables, such as gettables xxx, which will return
a row of column names followed by at most one row (the xxx table, if it exists). The command
gettables *,table_name,description will return a series of two-column rows containing the table
name and description for each table in the database.

SetDelim delimiter
Sets the delimiter used when returning data with the various get commands. You can quote the
delimiter if it contains spaces. You can use the character strings "\t" or "\n" to specify a tab or
line-feed, respectively.

sdOffice – Page 23

MAPI Automation

MAPI is Microsoft's messaging protocol. It is supported by many email client
applications, such as Exchange, Outlook, and Outlook Express, and is included
with all 32-bit Windows operating systems. sdOffice supports a MAPI object to
provide generic email sending capabilities for users. Using a MAPI object, an
application can create and send email, with attachments, from any workstation
that has email configured. Outlook Automation also supports email, and
additionally provides access to the user's email folders.

After MAPI is started, the application must start a session by signing on to an
email profile using the signon command. Once a session is active, you can send
email. Email profiles are maintained by the Mail and Fax program available from
the Control Panel.

To send email, use the newmail command, optionally followed by an number of
updatemail commands to add mail elements such as attachments and various
types of recipients. When the mail is ready, it is sent with the send command.

Note that boolean parameters are true if present, false if not, in any command.

Commands and parameters

NewMail parameters
Creates a new email item, optionally setting elements based on the parameters.
See the updatemail command for supported parameters and values. The email
isn't sent until the send command is used.

Send or SendMail parameters
Sends the current email message, optionally using the following parameters:

 dialog or ask (boolean)

The dialog option will cause a send dialog window to be presented to the user on
the sdOffice workstation before sending the email, if supported by the system's
email system.

SignOn parameters
This command, which logs into an email profile, is required before any email can
be sent or retrieved. Email profiles are defined with the Mail and Fax program,
available from the Control Panel window.

sdOffice – Page 24

 UserName or Profile=name
 Password=password
 Dialog or Ask (boolean)

A password may be optional, depending on the profile. Dialog will prompt the
user at the sdOffice workstation for the username and password (or just a profile,
depending on the configuration), then start the session.

SignOff
Ends the current session.

UpdateMail parameters
Updates the current email item with data found in the parameters. The fields and
values for the parameters can be:

 To=address
 CC=address
 BCC=address
 Subject=text
 Body=text
 Attach=pathname

Addresses are resolved as encountered. They can be either Internet-style
addresses or names from the user's address book. Any number of each type of
address can be added with multiple to, cc, or bcc parameters.

The body text can contain tabs or line-feeds with "\t" and "\n" character
sequences.

Attachment path names are relative to the sdOffice workstation. Multiple files
can be attached with multiple attach parameters. An asterisk in the pathname is
replaced with the sdOffice directory.

sdOffice – Page 25

Microsoft Excel Automation

Excel uses a two-level document hierarchy. The first level is a workbook (or
book), which is equivalent to a .xls file. An Excel session can have any number
of workbooks open at one time (OpenBook). When you create a new book
(NewBook), Excel names it Bookn. You can then perform a SaveAs to give it a
file name. Within each workbook are worksheets (or sheets). The worksheets
contain the rows and columns of data. Worksheets are named, like workbooks,
but the names are not related to the file name of the .xls file. When you create a
new sheet (NewSheet), you may provide a name at that time as a parameter.

sdOffice works with an active worksheet. When you open or create a workbook,
the first worksheet in that book is automatically activated. When you create a
new sheet in the book, it is automatically activated. You can also manually
activate a book (ActivateBook), and a sheet within the book (ActivateSheet),
using their names. Sheets can also be cleared of their contents, or deleted
entirely (ClearSheet, DelSheet). The name of the current book or sheet can also
be obtained using GetBook or GetSheet.

You can retrieve the data from a worksheet with GetData. You can write data to
the sheet with WriteCell or WriteRow. WriteCell provides full control over which
cell gets updated, while WriteRow is an efficient way of writing any amount of
data. WriteRow always writes from column 1, at a current row pointer. You can
set the row pointer with SetRow.

You can format cells, columns, or rows with the Format command, and merge
cells with the MergeCells command.

You can delete and insert columns and rows, using DelCol, DelRow, InsertCol,
and InsertRow. You could use this capability to add a title row after sorting and
subtotaling a list.

Print or manage the printer with Print, Printer, and PrintPreview. To change the
page format, use PageSetup.

Once a sheet has been populated with data, you can sort the data on up to three
columns. If you also have column headings in the first row, you can generate
subtotals and grand totals based on breaks in a column.

Note that boolean parameters are true if present, false if not, in any command.

Command Usage and parameters

Activate or ActivateBook workbook

sdOffice – Page 26

Activates an open workbook named as the parameter. The name is case-
insensitive.

ActivateSheet worksheet
Activates the sheet named as the parameter. The name is case-insensitive.

AddChart parameters
Adds a new chart to the current worksheet. The new chart becomes the current
chart. Use the setchart command to change the current chart. See the
editchart command for a parameter description.

ClearSheet
Removes data and formatting from the current sheet.

CloseBook
Closes the active workbook without saving (use Save or SaveAs to save
workbooks). After the command, you must use OpenBook, Newbook, or Activate
to make a new workbook active.

DelCol column
Deletes the column number in specified as the parameter.

DelRow rownum
Deletes the row number specified in the parameter, and sets the current row to
this value.

DelSheet
Deletes the active sheet from the active workbook. If the workbook has other
sheets, the first sheet is activated.

EditChart paramters
Edits the current chart (see addchart or setchart) based on the parameter
values specified. Unspecified parameters remain unchanged in the chart.

 x=measure
 y=measure
 w=measure
 h=measure
 Range=cell range
 Type=chart type
 Title=chart title
 CategoryTitle=category axis title
 ValueTitle=value axis title
 ExtraTitle=extra title
 ByColumn (boolean)
 ByRow (boolean)

sdOffice – Page 27

 CatLabels=cols or rows
 SeriesLabels=cols or rows
 Legend=yes|true|no|false
 ApplyLabels=none|value|label|percent|labelpercent

Measures are used to define the size and location of the chart when displayed in
the worksheet. The default location is 0,0 (upper left of worksheet), and the
default width and height are 4 inches and 3 inches, respectively. Measures
default to inches, but the units can be changed with the units command.

Cellranges are used to supply the data to chart. Charts use data in the
worksheet on which they are added. The default range is the contigous data
area starting with cell A1. To specify a different range, use an absolute range,
such as "B1:D10", or a relative range from the current row. Excel will
attempt to determine the descriptions and values from the range. This
interpretation can be controlled by the CatLabels and SeriesLabels parameters,
and the ByRow and ByColumn parameters.

The chart type can be one of the following names:
 area
 bar
 stackedbar
 100bar
 column
 line
 stackedline
 pie
 radar
 xyscatter
 3darea
 3dbar
 3dstackedbar
 3d100bar
 3dcolumn
 3dline
 3dpie
 3dsurface
 doughnut

The various titles apply to the chart or axes. The extra title is used for some chart types.

Byrow and Bycolumn determine how Excel inteprets the worksheet range for data. Byrow is the
default, where each row represents a new data series. Bycolumn interprets columns for the data
series. When determining the series and category titles, Excel will analyze the worksheet range.
You can specify the number of columns or rows to interpret using Catlabels and Serieslabels
parameters.

sdOffice – Page 28

ApplyLabels controls the use of labels on series data.

Format parameters
Use this command to format a cell, a column, a row, or the whole sheet.
Formatting can include font information, alignment, width, height, and masking.

The following fields can be set with any number of name=value pairs in the
parameter.

 autofit (boolean, no value needed)
 backcolor=colorname
 center (boolean)
 col=column
 color=colorname
 font=name
 fontbold or bold (boolean)

 fontitalic or italic (boolean)
 fontsize or size=size
 height=measure
 left (boolean)
 numberformat=format
 range=range
 right (boolean)
 row=row
 width=measure

If col and row are specified, then just the intersecting cell is affected. If col or row
is specified, then the specified column or row is affected. If range is spacified
(such as A1:F1), then all cells in the specified range are affected. If neither
column nor row nor range is specified, then all cells are affected.

Measure values are given in inches by default, but the the unit if measure can be
changed to points, millimeters, or centimeters with the Units command.

NumberFormat matches the number format values available in the Excel Format
Cells dialog. To force text, use "@". This is useful for fields that appear
numeric, such as zip codes or numeric ID codes, but which should be left
justified. Date formats are also specified this way, though Excel recognizes most
human-readable dates, such as "12/31/01", correctly. See Excel help for
complete formatting instructions. Some example values:

 #,##0.00 (2 decimals with commas)
 m/d (short month/year)
 @ (text)
 0.000 (3 decimals)
 General (general format)
 00000 (zip code)

sdOffice – Page 29

 mm/dd/yy (date)
 (* #,##0.00_);_(* (#,##0.00);_(* ""- ""??_);_(@_) (custom format)

Usage notes: Autofit should be performed after the data has been added to the
cells. If text fields contain numeric data with leading 0s, like zip codes or ID
codes, format the column as text (numberformat=@) before adding data.
Otherwise, Excel assumes the data is numeric and removes the leading 0s.

Formats colformats
Sets a series of column numberformats, as found in the format command. Each
column format is delimited by a tab or other column delimiter specified by the
setdelim command. For example, to set columns 1 and 2 to text and columns 4
and 5 to a 2-decimal point number, with the delimiter set to a vertical bar (|), use
this command: formats @|@||#,##0.00|#,##0.00. Note the third column is blank,
and no numberformat is applied.

GetBook
Returns the name of the current workbook.

GetBooks
Returns all book names in the Excel session, each terminated with a CR-LF
sequence, and ending with a single period (.CR-LF). If no books are opened, a
asterisk is returned rather than one or more book names.

GetData
Returns data values from the current sheet. For a single cell, specify both
column and row numbers. For a column, with each value delimited by CR-LF
sequences, specify just column. For a row, with each value delimited by tab
(CHR(9)) characters, specify just row. For all data, don’t specify either column or
row. Each row is returned delimited by CR-LF sequences. Within each row,
each column is delimited by tabs.

Col=column
Row=row

GetRow
Returns the current row number where the next writerow will place data. Use
setrow to modify the current row.

GetRows
Returns the number of rows in the contiguous non-empty region starting at cell
A1. This can be used to determine where to append to a worksheet, as long as
the worksheet has contiguous data, by using getrows, followed by setrow
rows+1.

GetSheet

sdOffice – Page 30

Returns the name of the current worksheet.

GetSheets
Returns all sheet names in the active workbook, each terminated with a CR-LF
sequence, and ending with a single period (.CR-LF). If no book is open, or no
sheets are in the active book, a asterisk is returned rather than one or more
sheet names.

Hide
Hides the Excel window. To make it visible again, use Show. The window is
hidden by default when the session starts.

InsertCol colnum
Inserts a new column at the column number parameter.

InsertRow rownum
Inserts a new row at the row number at the number parameter. The new row
becomes the current row.

LeaveOpen
Normally, sdOffice.exe will close Excel when the session is ended. If you send
this command, then Excel will be left open when the session ends.

MergeCells parameters
Merges multiple cells into one. This is useful to add title cells to reports. Only
the value in the upper-left cell is retained and/or displayed when cells are
merged.

Specify the upper left column and row as col and row, and the lower right column
and row as col2 and row2.

 Col=leftcolumnnum
 Row=toprow
 Col2=rightcolumnnum
 Row2=bottomrow
 Range=range

Row2 defaults to row, and col2 defaults to col.

If Range is specified, the cells in the named range are merged, and any other
parameters are ignored.

NewBook
Creates a new workbook. The name of the workbook is supplied later in a
SaveAs command.

sdOffice – Page 31

NewSheet sheetname
Adds a new sheet to the current workbook. If there is a text parameter, the sheet
is so named.

OpenBook workbook
Opens a workbook (.xls file) named in as the parameter. An asterisk (*) in the
file name will be substituted with the sdOffice path. For example, *salestable.xls
would find the file in the sdOffice directory.

PageSetup parameters
Sets several page size options for the Excel environment. These options can
affect the selection of printer characteristics automatically.

 Fitwidth (boolean)
 Gridlines (boolean)
 Orientation or orient=landscape|portrait
 Pagesize=pagesize

Fitwidth causes Excel to try to scale columns to fit the width of paper. If there are
many columns, it may help to specify landscape orientation.

Gridlines causes Excel to add grid lines when printing.

Pagesize is one of several internal paper size names.

Print
Prints the current sheet.

Printer parameters
Sets the printer name and characteristics to values defined in the parameter text.
Valid parameters are:

 Collate (boolean)
 Copies=copies
 From=from page
 Name=printername
 To=to page

Collate will turn on collation for multi-copy output. From and To determine a
range of pages to print, referring to printed pages rather than worksheet pages.
The printername must match a printer name in the list of system printers where
sdOffice is running.

PrintPreview
Launches the Print Preview screen in Excel.

sdOffice – Page 32

Run macroname
Runs the Public Sub-style VBA macro named as the parameter.

Save
Saves the active workbook.

SaveAs workbook
Saves the active workbook as the name supplied as the parameter. An asterisk
(*) in the file name will be substituted with the sdOffice path. For example,
*SalesTable would save the workbook in the sdOffice directory as
SalesTable.xls.

ScreenUpdating parameter
Sets screen updating based on the parameter value. Off, No, or False will turn
off screen updates until the session is closed, an error occurs, or another
ScreenUpdating command is issued. Any other value turns screen updating on.
Turning screen updating off can improve application performance.

SendKeys keys
Sends keystrokes to the application as if typed by the user from the keyboard. In
order to send keys, the application window must be visible, so be sure and issue
a Show command prior to this, or an error will be returned. In addition to
standard text, there are many special keys and key combinations that can be
entered by using special SendKeys characters..

SetChart chartnumber
Sets the current chart to the chart number specified. As charts are added, they
are numbered starting with 1.

SetDelim delimiter
Sets the delimiter used by the writerow command to the text value delimiter.
The default value is "\t", a text representation for the tab character. If desired,
this can be set to some other character, such as "," or "|", to make writerow
commands easier.

SetRow rownum
Sets the current row, used by WriteRow, to a new value. When a sheet is
created or activated, the current row is set to 1.

Show
Make the Excel window visible. To hide the window, use the Hide command. If
the application is left running with the LeaveOpen command, the window
automatically becomes visible when the session closes.

Sort parameters

sdOffice – Page 33

Used to sort the data in a sheet on values in up to three columns. You can
specify up to three col= column values in the parameter text. If any column
should be sorted in descending order, specify the col=column value, then the
descending flag. If Header is specified, then the first row in the sheet is
assumed to be column headings and is not sorted.

 Col=column
 Descending or Dsnd (boolean)
 Header (boolean)

SubTotal parameters
This function can be used to add Excel-generated sub-totals to a sheet. The
sheet must be in contiguous columns, with a heading row at the top, or an Excel
error occurs.

To add subtotals, you choose one column to be the "group by" column, a
summary function, and any number of columns on which to apply the function.
Whenever the "group by" column changes, a sub-total line is inserted with the
appropriate function applied to the sub-totaled columns. Grand totals are also
applied at the end of the sheet.

 Above (boolean)
 Below (boolean)
 Col=column
 Function=functionname
 Group=column
 PageBreak (boolean)
 Replace (boolean)

Function names can be:
 Avg
 Count
 Countnums
 Max
 Min
 Product
 StdDev or Std
 Sum
 Variance or Var

Multiple Col values can be specified, but only one Group and Function are
allowed. The subtotal function is applied to all columns specified. For example,
"col=2, col=4, col=5, function=sum" will sum columns 2, 4, and 5.

Above will generate subtotals above the group of rows to which they apply.
Below generates the subtotals below, the default.

sdOffice – Page 34

If you specify PageBreak, then a print of the sheet will generate page breaks at
group break points.

Replace will cause Excel to replace any existing subtotals in the sheet with the
new ones. The default is to add new subtotals, allowing for a series of sub-totals
to be generated for different columns or functions.

Units unitname
Sets the unit of measure for subsequent measure values. The default unit of
measure is inches. It may be set to any of these values:

 points or pts or p
 millimeters or mm or m
 centimeters or cm or c

All other values are interpreted as inches.

WriteCell parameters
This will write the value (number, date, or text) or formula (=expression) specified
in the cell specified. The following parameters are required:

 Col=column
 Range=range
 Row=row
 Value=value

To set a specific cell by column and row number, specify both Col and Row
values. Optionally, specify a range, such as F2:F30, to assign all cells in the
range to the same value or formula. A special character in the range of "*" will be
substituted with the current row. F2:F* will represent the range F2:F30, if the
current row is 30.

WriteRow parameters
Writes one or a series of rows, starting at the current row, with parameter data
supplied. The data columns are delimited by tab characters, supplied as either
tab characters - CHR(9) - or "\t" strings, or by the character specified in a
previous setdelim command. Each row is delimited by a "\n" sequence.

While it is possible to write formulas to cells in this manner, each row would have
to be adjusted to ensure correct relative addressing. To write formulas to a
range of cells, it is easier to use the WriteCell function, as Excel handles relative
cell addressing automatically.

sdOffice – Page 35

Microsoft Outlook Automation

This program works with Outlook appointments, contacts, tasks, and email
folders. After starting the automation session, you can select a folder to work
with using the SetFolder command. When adding the various types of records,
an appropriate default folder will be automatically selected if necessary. This
current folder is used for the SetGet and GetNext commands. To view valid
folders, use the GetFolders command.

You work with current appointments, contacts, tasks, or emails. The current
record is specified with an Newitem command, such as as NewTask or
NewAppointment, or with a GetNext command, which follows a SetGet
command, which defines search criteria and return data for the current folder. To
modify the data in any current record, use the Edititem commands, such as
EditAppointment. To delete a record, use the Delitem commands, such as
DelContact.

Note that boolean parameters are true if present, false if not, in any command.

Command Usage and parameters

DelAppointment or DelAppt
Deletes the current appointment record. The current appointment record is
normally selected via a setget/getnext sequence. After the delete, there is no
current appointment record.

DelContact
Deletes the current contact record.

DelTask
Deletes the current task record.

GetFolders
Returns a list of folders available in the user’s Outlook configuration. Each folder
consists of a comma-delimited path, such as "Personal Folders,Calendar".
Multiple folders are delimited by a CR-LF sequence. sdOffice will scan up to
three levels deep in the user’s folder hierarchy. Each folder name is suffixed by
the type of records, Appointment, Contact, Email, or Task, in parenthesis.

GetAll
Returns all remaining records after a SetGet function. Each record has the same
format as a GetNext response, and multiple records are delimited by an extra
blank line.

sdOffice – Page 36

GetNext
Makes the next available record after a SetGet function the current record, and
returns a list of fields. If no more records match the criteria from the SetGet
command, then a "*" is returned.

The data format returned for records is based on the field names specified in the
last SetGet command. Each field is returned in the format name=value, with a
CR-LF sequence delimiting each filed.

LeaveClose
Normally (and unlike the Word and Excel interfaces), sdOffice will leave the
Outlook task running when the session closes. Issing this command will cause
sdOffice to close the Outlook task when it closes.

NewAppointment or NewAppt parameters
Adds a new appointment, sets any field values defined as parameters, saves the
appointment, and leaves it as the current appointment record. See the
UpdateAppointment command for a list of valid fields. Subsequent Update
commands can be used to update the same record.

NewContact parameters
Adds a new contact, sets any field values defined in the parameters, saves the
contact, and leaves it as the current contact record. See the UpdateContact
command for a list of valid fields. Subsequent UpdateContact commands can be
used to update the same record.

Newmail or Email or NewEmail parameters
Creates a new email message, optionally setting certain message elements from
parameter arguments. See the UpdateMail command for a list of valid
parameters. Once the message is created, additional elements of the message
can be updated with subsequent UpdateMail commands, until the SendMail
command is used.

SendMail
Sends the current email, previously defined with a NewMail command, and
optionally edited with the UpdateMail command. Once the mail is sent, there is
no current email.

Usage note: In Outlook, immediate delivery must be enabled for email to be sent
automatically. Within Outlook, choose the Tools menu, Options window. On the
Options window, select the Email or Mail Delivery tab and enable the immediate
or automatic delivery of messages. The terminology varies somewhat between
different versions of Outlook.

SetFolder foldername

sdOffice – Page 37

Sets the current folder to the parameter value . This must be a valid
appointment, contact, email, or task folder, with the hierarchy levels delimited by
commas; "Public Folders,Sales,Meetings", for example. You can also use one
of these standard names to get the user's default folder of that type:

 contacts
 appointments
 email
 tasks

SetGet parameters
Sets criteria and fields for subsequent GetNext and GetAll commands. The
parameters consist of a search expression, which always starts with a field name
in brackets, such as [subject], followed by a list of field names to return in
GetNext and GetAll commands.

Search Expression
The search expression format is defined by Microsoft as one or more boolean
functions separated by And or Or. Field names from the appropriate database
are placed inside square brackets, and are compared with literal values enclosed
in quotes or plain numbers. Valid operators are similar to Basic operators: >, <,
=, >=, and <=. The various Update commands list common field names that are
available for the different record types. For example, if the current folder is an
appointments folder, then the search expression could check the [Subject] field,
the [Start] field, and others found in an appointment record.

Examples:

[Start]>="12/20/2000 9:00am"
[Start] > "12/20/2000" And [End]<="12/20/2000 6:00pm"

GetNext Fields
In addition to the search criteria, which is indicated by an opening square
bracket, you should list one or more field names to return with the GetNext
command. For a list of valid field names, see the lists below. Note that for
search expressions, only the first name is valid, in cases where multiple field
name options are listed.

Delimit each field, and the search expression, with commas.

A complete SetGet command will might look like this:

SetGet [Start]>="12/20/2000 6:00 AM",start,duration,subject

Valid field names for appointments:
 start
 end

sdOffice – Page 38

 duration
 subject
 body
 location
 alldayevent
 reminder or reminderminutes
 entryid

Valid field names for contacts:
 fullname
 lastname
 firstname
 companyname or name
 businessaddressstreet or street
 businessaddressstate or state
 businessaddresscity or city
 businessaddresspobox or pobox
 businessaddresspostalcode or zip or postalcode
 businessaddresscountry or country
 businessphone or phone
 businessphone2 or phone2
 businessfax or fax
 businesshomepage or homepage
 email
 email2
 email3
 otherphone
 otherfax
 account
 customerid
 user1
 user2
 user3
 user4
 entryid

Valid field names for tasks:
 startdate
 duedate
 remindertime
 subject
 body
 reminder or reminderminutes
 entryid
 complete
 datecompleted
 status
 actualwork
 totalwork
 delegator
 percentcomplete

Valid field names for email:
 to

sdOffice – Page 39

 cc
 bcc
 subject
 replyto
 attach
 body
 sendername
 senttime
 receivedtime
 entryid

UpdateAppointment or UpdateAppt parameters
Updates the current appointment record with parameter fields and values. The
current record is specified by either a NewAppointment command or a
SetGet/GetNext sequence.

The primary and alternate field names available are:

 alldayevent (boolean)
 body=text
 duration=minutes
 end=datetime (such as "12/20/2001 10:15am")
 location=text
 reminder (boolean)
 reminderminutesbeforestart or reminderminutes=minutes
 start=datetime (text date/time)
 subject=text

By default, reminders on new appointments are turned off. You can set
Reminder or ReminderMinutesBeforeStart to turn on a reminder.

UpdateContact parameters
Updates the current contact record with parameter fields and values. The current
contact record is specified by either a NewContact command or a
SetGet/GetNext sequence.

The primary and alternate field names, all of which can be set to any text, are:
 account
 businessaddress
 businessaddresscity or city
 businessaddresscountry or country
 businessaddresspobox or pobox
 businessaddresspostalcode, zip, or postalcode
 businessaddressstate or state
 businessaddressstreet or street
 businessfax or fax
 businesshomepage or homepage

sdOffice – Page 40

 businessphone or phone
 businessphone2 or phone2
 companyname or name
 customerid
 email
 email2
 email3
 firstname
 fullname
 lastname
 otherfax
 otherphone
 user1
 user2
 user3
 user4

UpdateMail parameters
Updates the current email message. You can issue any number of UpdateMail
commands to prepare an email, then issue the SendMail command to send the
email.

The parameter names recognized are:

 Attach=pathname
 Bcc=address
 Body=text (use \n for line breaks)
 Cc=address
 Replyto=address
 Subject=text
 To=address

The attach command can contain the name of a file to attach. Use multiple
attach parameters to attach multiple files. Any asterisk (*) character in the
pathname is replaced with the path to the sdOffice directory. Pathnames are
relative to the sdOffice workstation.

The To, CC, ReplyTo, and Bcc fields can specify email addresses or address
book aliases. Each is resolved as encountered. Multiple addresses can be
entered with multiple parameters. For example, to add two CC address, use
cc=first, cc=second.

UpdateTask parameters

sdOffice – Page 41

Updates the current task record with parameter fields and values. The current
task record is specified by either a NewTask command or a SetGet/GetNext
sequence.

startdate=datetime
duedate=datetime
remindertime=datetime
subject
body
reminder=yes|true

Date/time values can be entered in any recognizable format, such as
"12/31/2001 6:00PM" or "December 31, 2001 6:00 PM".

sdOffice – Page 42

Microsoft Word Automation

The basic unit in Word is a document, which is equivalent to .doc file. You can
open any number of documents in a Word session. sdOffice works with one
document at a time, called the active document. To create a new document, use
the NewDoc command. Give it a name with the SaveAs function. New
documents can be based on an existing Word document template. To open an
existing document, use the OpenDoc command. Both NewDoc and OpenDoc
automatically set the active document. To get the name of the active document,
use GetDoc; to activate any open document, use Activate.

In an active document, you can add paragraphs (Write), page breaks
(NewPage), tables (Table and TableRow), bullet lists (BulletList), numbered lists
(NumberList), and images (Image). The format of added text can be modified
with Font and Paragraph commands. Table cell, column, and row formatting can
be modified with TableDef.

If a document contains merge fields, you can place values in those fields with
MergeField. To just replace text values with new values, use Replace.

You can copy the active document to the clipboard with CopyDoc, then paste
either the rich text or plain text to another document with PasteDoc and
PasteText. You can also clear the contents of the current document with
ClearDoc.

To print the document, use Print, Printer, and PrintPreview. To modify the page
setup, use PageSetup.

Note that boolean parameters are true if present, false if not, in any command.

Command Usage and parameters

Activate documentname
Activates the document named in the parameter text. This is normally the
document file name, without leading path information. For a new document, it is
usually "Documentn". You can use GetDoc to retrieve the name of the active
document.

BulletList list
Converts the contents of the parameter into a bullet-style list. Each paragraph,
delimited by a "\n" sequence, becomes a bullet list item.

ClearDoc
Clears all the text from the current document.

sdOffice – Page 43

CloseDoc
Closes the active document without saving it. Use Save or SaveAs to save the
document. After this command, no document is active. Use OpenDoc, NewDoc,
or Activate to make another document the active document.

CopyDoc
Copies the current document to the clipboard. Word copies both the plain text
and the rich text forms. It does not copy headers or footers, just the story text.

Font parameters
Sets the font for any new text added to the document. The font defaults to the
"Normal" style defined in the user’s Word configuration. Each element of the font
is defined with a name=value pair, with pairs delimited by commas.

 bold (boolean)
 color=colorname
 italic (boolean)
 name=fontname
 normal (boolean)
 size=points

Setting "normal" will revert all attributes to the Normal style defined in the user's
Word configuration.

GetDoc
Returns the current document name. This name can be used by the Activate
command.

GetDocs
Returns all document names in the Word session, each terminated with a CR-LF
sequence, and ending with a single period (.CR-LF). If no documents are
opened, a asterisk is returned rather than one or more names.

GetFields
Returns all the mergefield names in the current document, delimited by the
current delimiter specified by the setdelim command. The default delimiter is a
tab character (CHR(9)).

GetParagraph
Returns the current paragraph number. When a document is opened or
activated, the current paragraph number is set to the document paragraph count.
The paragraph number can be set with the SetParagraph command.

GetParagraphs
Returns the number of paragraphs in the document.

sdOffice – Page 44

GetText
Returns the text of the current document. Paragraphs will be delimited by CR-LF
sequences.

Hide
Makes the Word window invisible. To show the window again, use Show. The
Word window is hidden by default when then session is started.

Image parameters
Adds an image to the current document. The image can be placed "in-line" as a
new paragraph, or can be placed anywhere on the page that the new paragraph
resides on.

 file=imagefilename
 h=measure
 inline (boolean)
 stretch (boolean)
 w=measure
 x=measure
 y=measure

The imagefilename value should be a full path to the image to be loaded. An
asterisk (*) in the file name will be substituted with the sdOffice path. For
example, *logo.jpg would find the file logo.jpg in the sdOffice directory.

x,y,w, and h are size and position values. The images is proportionally adjusted
to fit, unless the stretch flag is present, in which case the image is stretched to fit
the w and h dimensions.

If the inline flag is present, the image will remain between the preceding and next
paragraphs when the image command is issued, with the x and y values being
offsets from that paragraph position. Otherwise, the x and y values are absolute
page positions.

Measure values are given in inches by default, but the the unit if measure can be
changed to points, millimeters, or centimeters with the Units command.

LeaveOpen
Normally, sdOffice will close Word when the session is closed. If you send this
command, Word will be left open.

MergeField parameters
Scans the document for merge fields named in the parameters, setting their
values to each name’s value. Set the field names and their associated values as

sdOffice – Page 45

name=value pairs. The value can contain tab or CR-LF characters as "\t" and
"\n", respectively.

sdOffice specifically looks for MERGEFIELD type codes, which can be inserted
into a document with the "Insert, Field" dialog box, selecting "Mail Merge" type
fields, and then selecting the "Merge Field" subtype.

NewDoc documentname
Adds a new document to the session, and makes it the current document. To
retrieve the name, use GetDoc. If a name is provided as a parameter, it is used
as a document template for the new document. The document template file must
exist either as a full path or in the user's Templates directory. An asterisk (*) in
the file name will be substituted with the sdOffice path. For example,
*letterhead.dot would find the file letterhead in the sdOffice directory.

NewPage
Adds a page break to the current document. The current paragraph is set to
begin writing at the top of the new page.

NumberList list
Converts the contents of the parameter text into a numbered list. Each
paragraph, delimited by a "\n" sequence, becomes a list item.

OpenDoc documentname,options
Opens the document file named as the parameter, and sets that as the current
document. An asterisk (*) in the file name will be substituted with the sdOffice
path. For example, "*Collection Letter.doc" would find the file in the sdOffice
directory.

An option "readonly" is available, allowing multiple users to open the same
document without errors, as long as all users use the readonly mode.

PageSetup parameters
Sets several page size options for the Word environment. These options can
affect the selection of printer characteristics automatically.

 BottomMargin=measure
 Height=measure
 LeftMargin=measure
 Orientation or Orient=landscape|portrait
 PageSize=pagesize
 RightMargin=measure
 TopMargin=measure
 Width=measure

sdOffice – Page 46

pagesize can be one of several internal paper size names.

Measure values are given in inches by default, but the the unit if measure can be
changed to points, millimeters, or centimeters with the Units command.

Paragraph parameters
Sets paragraph characteristics for paragraphs added after this command. Use
this to set alignment, indentation, borders, shading, and other paragraph settings.

 Left (boolean)
 Right (boolean)
 Center (boolean)
 Justify (boolean)
 Indent or LeftIndent=measure
 RightIndent=measure
 Keeptogether (boolean)
 SpaceBefore=measure
 SpaceAfter=measure
 Shade=2.5|5|10|15|20|25|30|40|50|75|100
 Border (boolean)
 Normal (boolean)

Normal, if it appears as a parameter, will force all options to their normal state.

Measure values are given in inches by default, but the the unit if measure can be
changed to points, millimeters, or centimeters with the Units command.

PasteDoc
Paste rich text from the clipboard to the end of the current document. Rich text
can be placed on the clipboard by the CopyDoc command.

PasteText
Paste unformatted text from the clipboard to the end of the current document.

Print
Print the current document.

Printer parameters
Sets the printer name and characteristics to values defined in the parameter text.
Valid parameters are:

 Collate (boolean)
 Copies=copies
 From=from page
 Name=printername
 Pages=page range(s)

sdOffice – Page 47

 To=to page

Collate will turn on collation for multi-copy output. From and To determine a
range of pages to print. Alternatively, specify the Pages parameter, which
accepts a list of page numbers and/or page ranges, such as "1, 5-9" for pages 1,
and 5 through 9. Remember to quote the range if it contains commas. The
printername must match a printer name in the list of system printers where
sdOffice is running.

PrintPreview
Executes a Print Preview of the current document in Word.

Replace parameters
Scan the current document for occurrences of names in the parameter text,
replacing them with the associated values. Values can contain tabs and CR-LF
values as "\t" or "\n", respectively. For example, replace [Name]="Acme
Incorporated" will replace the text string "[Name]" with Acme Incorporated.

Run macroname
Runs the Public Sub-style VBA macro named as the parameter.

Save
Saves the current document. Note that the document must already be named
with a previous OpenDoc or SaveAs command.

SaveAs documentname
Saves the current document as the name specified in the parameter text. An
asterisk (*) in the file name will be substituted with the sdOffice path. For
example, *Collections would save the file as Collections.doc in the sdOffice
directory.

ScreenUpdating parameter
Sets screen updating based on the parameter value. Off, No, or False will turn
off screen updates until the session is closed, an error occurs, or another
ScreenUpdating command is issued. Any other value will turn screen updating
on. Turning screen updating off can improve application performance.

SendKeys keys
Sends keystrokes to the application as if typed by the user from the keyboard. In
order to send keys, the application window must be visible, so be sure and issue
a Show command prior to this, or an error will be returned. In addition to
standard text, there are many special keys and key combinations that can be
entered by using special SendKeys characters..

SetDelim delimiter

sdOffice – Page 48

Sets the delimiter used by the tablerow command to the text value delimiter.
The default value is "\t", a text representation for the tab character. If desired,
this can be set to some other character, such as "," or "|", to make tablerow
commands easier.

SetParagraph number
Sets the current paragraph to the parameter value. To force an append on the
next Write, BulletList, NumberList, or Table command, set the paragraph to an
artifically high number.

Show
Make the Word window visible. To hide the window, use the Hide command. If
the application is left running with the LeaveOpen command, the window
automatically becomes visible when the session closes.

Table parameters
Adds a table to the current document, using the characteristics specified as
parameters. Once the table is defined, you can add rows to it with the TableRow
command, and define individual cell, column, or row characteristics with the
TableDef command.

 Autofit (boolean)
 Borders or Border=grid|box
 Center (boolean)
 Cols=colwidths
 HeadRows=rows
 Left (boolean)
 Right (boolean)

The left, right, and center options align the table within the page margins. If
autofit is used, then the table columns will be sized automatically (if possible) to
fit the cell data. The table can have an outside box, or an outside box and inner
grid lines, based on the setting of Borders. HeadRows instructs Word to re-
display the top rows at a page break.

You can pre-define the number of columns and their widths with the Cols option.
Set colwidths to a space-delimited list of widths in the current unit of measure
(default=inches). For example, cols="1.5 3.25 1.25" would create a three-column
table, with the widths 1.5, 3.25, and 1.25 inches.

TableDef parameters
Sets the cell characteristics of a given cell, column, or row in the last table
defined in the document. New tables are created with the Table command.

 BackColor=colorname
 Center (boolean)

sdOffice – Page 49

 Col=column|last
 Color=colorname
 Font=fontname
 FontBold or Bold (boolean)
 FontItalic or Italic (boolean)
 FontSize or Size=points
 Height=measure
 Left (boolean)
 Right (boolean)
 Row=row|last
 Width=measure

If you specify both Col and Row, then the specified cell is affected. If you specify
just Col or Row, then the specified column or row is affected. Otherwise, all cells
are affected.

You can specify "last" for either Col or Row, and the bottom row or right-most
column, at the time of the command, is used.

Left, right, and center options will align the cells specified.

Rows and columns are added as necessary. If a column is added that would
exceed the width of the page, an error will occur.

Measure values are given in inches by default, but the the unit if measure can be
changed to points, millimeters, or centimeters with the Units command.

TableRow text
Adds one or more rows from the parameter text to the last table in the document.
Each row is delimited by the text sequence "\n" or a linefeed character
(CHR(10)). Each cell within the row is delimited by the current delimiter set by
the setdelim command. The delimiter defaults to a tab (CHR(9) or "\t").

Rows and columns are added as necessary. Take care not to add columns that
would exceed the page margins, or an error will result. It may be necessary to
specify column widths in the initial Table command or in previous TableDef
commands.

Units unitname
Sets the unit of measure for subsequent measure values. The default unit of
measure is inches. It may be set to any of these values:

 points or pts or p
 millimeters or mm or m
 centimeters or cm or c

sdOffice – Page 50

All other values are interpreted as inches.

Write or Type text
Adds one or more paragraphs from the parameter text to the end of the current
paragraph. The current paragraph is incremented by the number of paragraphs
added. To append to an existing pararaph, use setparagraph before the write
command.. Normally, paragraphs will be delimited by two "\n" sequences, and
Word will word-wrap the text based on the current page, paragraph, and font
settings.

In addition to the paragraph breaks, you can insert tabs with CHR(9) characters
or "\t" sequences.

sdOffice – Page 51

About the Samples

sdOffice comes with a number of samples which can be referenced for "how to" information.
Each sample is provided in the sdOffice directory in a plain text file. All files, and associated
documents that are used by the samples, start with the characters "s_". The *.txt files are each
command files that can be used with the sdRun programs.

To run these samples, choose one of these methods, depending on your environment:

Unix

 Copy the samples (s_*.*) to a directory on your Unix system.
 Start the sdOffice server on your Windows workstation.
 Using a terminal emulator, login to the Unix system using a TCP/IP protocol such as telnet.

sdrun.pl can then determine your workstation's address.
 Use the perl script sdrun.pl for each sample: perl sdrun.pl SampleFile

Optionally, you can send the commands to another workstation running the sdOffice server by
appending the server IP address or hostname and port to the perl command.

Windows

 Open a MS-DOS command window.
 cd to "c:\program files\sdsi\sdoffice" (or other directory if you installed sdOffice elsewhere).
 Run the samples using sdrun.exe: sdrun SampleFile

If you want to direct the commands to another workstation running the sdOffice server, append
the server IP address or hostname and port to the sdrun command.

PRO/5, Visual PRO/5, or ProvideX

On a local Windows workstation, the sdOffice server need not be running, as these these
programs use the DDE interface. On Unix, the sdOffice server must be running, and you need to
be logged into the Unix system as a terminal user over TCP/IP.

From the Basic console prompt (usually ">"), enter call
"sdrun.bb","SampleFile","","",resp$,errmsg$

For ProvideX, use "sdrun.pv" in place of "sdrun.bb". If you want to direct the commands to
another workstation, change the two null ("") arguments to "ServerIP" and "ServerPort",
respectively.

sdOffice – Page 52

Sample: ADO Database Manipulation

File: s_ado.txt

This sample shows some of what you can do with the ADO object,
used for database manipulation through ODBC, OLE DB, and ADO
providers. This example assumes you have a data source called
NorthWind, which is installed as a sample with Microsoft Access.

Start ADO
ado

Connect to the database. Most databases will require several
parameters in the connect string, such as DSN, UID, and PWD.
This local Access database doesn't require everything.
connect dsn=NorthWind

Return a list of tables with the word Product in the name. The
list returned contains two columns.
gettables *Product*,table_name,description

Issue a query, then return all the rows.
execute select * from products
getrows

Create a new table
execute create table TestTable (id char(5), name char(30))
execute insert into TestTable (id,name) values ('10','Test Record 10')
execute insert into TestTable (id,name) values ('20','Record 20')

show columns of table
getcolumns TestTable,*,column_name,data_type,character_maximum_length

Now query that table and return records one at a time. When the end
of records is encountered (the third getrow), an * is returned.
execute select name,id from TestTable order by name
getcols
getrow
getrow
getrow
closers

Remove the test table
execute drop table TestTable

sdOffice – Page 53

Sample: Excel Calculation Engine
File: s_excel2.txt

This example uses an existing worksheet macro to return a calculated value.

Start Excel. It will remain hidden.
excel

Open workbook s_excel2.xls in sdOffice directory.
This workbook contains a macro that calculates the Standard Deviation
of values in the first column (according to MS Office specifications,
no more than 30 values can be used). The result is placed in cell B1.
To view the macro, open the workbook in Excel and use Tools, Macro.
openbook *s_excel2.xls

Write some values to column 1.
writerow 12\n15\n99\n85

Run the macro.
run CalcStdDev

Return the result
getdata range=b1

sdOffice – Page 54

Sample: Excel Formatting
File: s_excel1.txt

This sample demonstrates many of the formatting capabilites you can
use when writing Excel worksheets.

Start Excel and open a new sheet.
excel
newbook
newsheet Formatting

Write some data. Each \t represents a tab to a new cell. You could
add \n to break to the next row. Sequential commands automatically
do a row break.
writerow Text Column\tZip Code\tNumeric Text\tAmount 1\tAmount 2
writerow Text 1\t95682\t134.50\t1111.11\t-2222.22
writerow Text 2\t00222\t955.25\t10.12\t0

Change format of text column. Units for width default to inches.
format col=1,width=2.0,font=Courier,italic,backcolor=blue,color=white

Force zip code to be 00000, left justified.
format col=2,numberformat=00000,left

Force column 3 to text style.
format col=3,numberformat=@

Format the last two columns as numbers, using the Range option.
format range=d:e,numberformat="#,##0.00;(#,##0.00)"

Fix heading row, which overrides previous formats that affected row 1.
format row=1,backcolor=gray25,bold,size=12,color=black

Autofit that whole sheet.
format autofit

Leave Excel running when we exit. Upon exit, Excel will become
visible automatically. We could explicitly force this with a show
command.
leaveopen

sdOffice – Page 55

Sample: Excel Report
File: s_excel3.txt

This sample generates a report with 31 data lines. It then formats,
sorts, and sub-totals the report. Finally, it adds a report title.

Start excel and open up a new worksheet.
excel
newbook
newsheet

Watch what's going on, though in practice, performance is better if
the window remains hidden.
show

Write some data. At least here, we turn off screen updating for the writes.
But first, write a heading row.
writerow Slsp\tSlsp Name\tCustID\tCustomer Name\tYTD Sales\tYTD Cost
screenupdating off
writerow 100\tSALLY SMITH\t00005\tADVANTAGE BUSINESS FORMS\t10514.85\t1752.48
writerow 110\tGEORGE WINSTON\t00013\tALLIED SERVICES, INC.\t8705.61\t1088.2
writerow 110\tGEORGE WINSTON\t00018\tEAGLE FORMS\t18712.21\t3742.44
writerow 110\tGEORGE WINSTON\t00026\tWESTERN COMPUTER
SERVICES\t12514.85\t2502.97
writerow 101\tJERRY JONES\t00030\tMARCH, INC.\t8906.27\t1781.25
writerow 100\tSALLY SMITH\t00037\tPROFESSIONAL HELP SVC.\t6504.95\t1300.99
writerow 100\tSALLY SMITH\t00042\tALL-PRO FORMS\t17106.93\t2138.37
writerow 100\tSALLY SMITH\t00046\tROCKY MOUNTAIN MANAGEMENT\t17003.3\t2429.04
writerow 110\tGEORGE WINSTON\t00055\tWASHINGTON ST.
COMPUTERS\t9106.93\t1517.82
writerow 101\tJERRY JONES\t00064\tSOUTHWEST INVESTMENTS\t9702.31\t1212.79
writerow 101\tJERRY JONES\t00073\tGREEN & GREEN, INC.\t4909.57\t981.91
writerow 110\tGEORGE WINSTON\t00080\tGREAT LAKES MANAGEMENT
LTD.\t14110.23\t2822.05
writerow 101\tJERRY JONES\t00084\tEMPIRE COMPUTERS &
SOFTWARE\t13407.92\t2234.65
writerow 101\tJERRY JONES\t00088\tMBA\t12705.61\t2117.6
writerow 110\tGEORGE WINSTON\t00094\tBUSINESS RESOURCES, INC.\t19909.57\t3981.91
writerow 110\tGEORGE WINSTON\t00112\tALLANTE SYSTEMS INC.\t6013.2\t859.03
writerow 101\tJERRY JONES\t00116\tRIORDAN COMPANY\t3705.61\t529.37
writerow 101\tJERRY JONES\t00119\tBROWNIE'S COMPUTERS\t16514.85\t2359.26
writerow 110\tGEORGE WINSTON\t00128\tABLE PLUS, INC.\t5611.88\t935.31
writerow 110\tGEORGE WINSTON\t00131\tELKHORN PLAZA COMPUTERS\t13006.6\t2601.32
writerow 100\tSALLY SMITH\t00135\tSPECIALTY CONSULTING, INC.\t2000\t250
writerow 101\tJERRY JONES\t00152\tJL MARKET SERVICES\t3401.32\t680.26
writerow 101\tJERRY JONES\t00161\tABC BUSINESS FORMS\t20712.21\t4142.44
writerow 100\tSALLY SMITH\t00170\tZEBRA FORMS, INC.\t19508.25\t2438.53
writerow 110\tGEORGE WINSTON\t00175\tCLINKERDALES SUPPLIES\t11000\t1833.33
writerow 110\tGEORGE WINSTON\t00181\tJENSEN COMMERCIAL LTD.\t8100.33\t1012.54
writerow 101\tJERRY JONES\t00184\tBRIDON SERVICES\t22712.21\t3244.6
writerow 101\tJERRY JONES\t00191\tABLE CONSULTING\t18203.96\t3033.99
writerow 101\tJERRY JONES\t00205\tWALKER & WADE\t5003.3\t1000.66
writerow 100\tSALLY SMITH\t00210\tRUSTY'S BUSINESS FORMS\t5511.55\t918.59

sdOffice – Page 56

screenupdating on

Add a gross profit calculation to column G using a formula. The range
g2:g* represents rows 2 through the current row. The current row is
actually the next one to be written, so after filling the cells with
the formula, we reset the last one, which is below the written range,
to "".
writecell range=g1,value="YTD Profit"
writecell range=g2:g*,value="=e2-f2"
writecell range=g*,value=""

Now sort the data first on column 1 (Slsp ID), then descending column
5 (YTD Sales).
sort col=1,col=5,descending,header

Add subtotals. To do this, that heading row written earlier is required.
subtotal group=1,col=5,col=6,col=7,function=sum

Do some formatting.
format col=1,numberformat=@
format col=3,numberformat="00000",left
format range=e:g,numberformat="#,##0.00"

Dress up the heading
format row=1,color=blue,backcolor=gray25,bold

Make everything fit. By not selecting any range, the whole sheet gets
affected.

format autofit

Insert a title
insertrow 1
writecell col=1,row=1,value="Customers by Salesperson"
format col=1,row=1,font=New Times Roman,size=14,bold,center
mergecells range=a1:g1

Don't close Excel when we're done.
leaveopen

sdOffice – Page 57

Sample: Excel Charting
File: s_excel4.txt

This sample demonstrates a worksheet with two charts, by first
creating some worksheet data, then adding a column chart and a
pie chart.

excel

Open a new workbook and show the process
newbook
show

Set the delimiter from the default tab (or \t) to a comma,
simplifying the next couple of statements, which write data
to the worksheet.
setdelim ,
writerow Name,Sales,Cost
writerow Allen,200,100
writerow Bill,250,123
writerow Sue,260,175

Add a 3D column chart at the position 3,0.25 (inches). Edit some
additional chart values with additional editchart commands.
addchart x=3,y=.25,type=3dcolumn
editchart title="Sales Figures"
editchart valuetitle="Amounts in Dollars"

Add a pie chart, using data from the first two columns only, and
interpreting the value groups by column rather than the default,
by row. Make the chart smaller than the default 4x3 inches.
addchart y=1,x=.1,w=2.5,h=2.5,type=pie,range=A1:B4,bycolumn
editchart title="Sales Figures"
editchart applylabels=percent
leaveopen

sdOffice – Page 58

Sample: MAPI email submission

File: s_mapi1.txt

This sample uses MAPI to create an email with attachments and
send it to a dummy email address. Modify the address to send
to yourself to see the result.

mapi

MAPI sessions must be logged on. This command will prompt the
user for profile information and start the session.

signon ask

Creates a new email, setting the To: address. You can set
parameters here or in subsequent updatemail commands. Note the
use of quotes around the subject to hide the embedded comma.
To attach multiple files, just use multiple attach commands.
newmail to=allenm@synergetic-data.com
updatemail subject="A test of MAPI email automation, from sdOffice."
updatemail body="Line 1\nLine 2\nLine3\n\nFrom,\nMe\n"
updatemail attach=*sdrun.pl,attach=*s_mapi1.txt

When the mail is ready, send it.
send

sdOffice – Page 59

Sample: Outlook Add Appointment
File: s_appt1.txt

This sample will write a test appointment to your Outlook Calendar
database. Note that each time you run this, an additional record
will be added!

outlook

This establishes the current appointment record as a new empty record,
and sets the start time. The record isn't actually written to Outlook
until an update command is issued.

newappointment start="1/1/2001 8:00 AM"

Update fields into the new record. Each update will write the
associated data to the same current record. You can set field values
either in the newappointment command or the update command.

updateappt duration=60,subject="Test entry from sdOffice"

sdOffice – Page 60

Sample: Outlook Add Contact
File: s_cont1.txt

This sample will write a test contact to your Outlook Contacts
database. The customer ID for the data will be "test". Note that
each time you run this, an additional record will be added!

outlook

This establishes the current contact record as a new empty record,
and sets the CustomerID field to "test". The record isn't actually
written to Outlook until an update command is issued.

newcontact customerid="test"

Update fields into the new record. Each update will write the
associated data to the same current record. You can set field
values either in the newcontact command or the update command.

updatecontact companyname="Test Record",firstname=First,lastname=Last
updatecontact email=somewhere@overrainbow.com
updatecontact user1="Record added by sdOffice as a test record"

sdOffice – Page 61

Sample: Outlook Email
File: s_mail.txt

This example will send an email with an attachment to a dummy email
address. To receive an email, you should change the reference to=xxx
to your email address.

Start Outlook email

outlook
setfolder email

Create a new email message. It will be addressed to the address shown.
newemail to=trash@synergetic-data.com

Add some information to the email.
updatemail subject=Test message
updatemail body="Attached is the sample sdOffice document template s_ltrhd.dot.\n\nEnjoy!\n"
updatemail attach=*s_ltrhd.dot

send it
sendmail

sdOffice – Page 62

Sample: Outlook Read Appointments
File: s_appt2.txt

Displays appointment record(s) found on January 1, 2001. This is the
date of test records added by s_appt1.txt.

outlook

set the current folder to the default appointments folder
setfolder appointments

This sets the filter condition. If you want to simply get every appt,
you could do something like [subject]>"". In addition to the
filter, you also specify a list of fields to return.
setget [start]>="January 1, 2001 8:00 AM" and [end] <= "January 1, 2001 10:00
AM",start,duration,subject

This command gets the first record and displays the requested fields.
In a program, you could continue to issue getnext commands until
just an "*" is returned, indicating no more records satisfy the
filter criteria.
getnext

This command returns a list of all remaining records, if any.

getall

sdOffice – Page 63

Sample: Outlook Read Contacts
File: s_cont2.txt

Displays the first contact record with a customer ID of "test". The
s_cont1.txt command file writes such a record.

outlook

set current folder to default contacts folder
setfolder contacts

This sets the filter condition. If you want to simply get every name,
you could do something like [companyname]>"". In addition to the
filter, you also specify a list of fields to return.

setget [customerid]="test",name,firstname,lastname,email

This command gets the first record and displays the requested fields.
In a program, you could continue to issue getnext commands until
just an "*" is returned, indicating no more records satisfy the
filter criteria.
getnext

This command returns a list of all remaining records, if any.

getall

sdOffice – Page 64

Sample: Word Document Formatting
File: s_word1.txt

Writes a letter to demonstrate features of Word automation

start Word and open a document template from the sdOffice directory.
word
newdoc *s_ltrhd.dot

show the document as we work - note: bad for performance
show

change default font characteristic
font bold

Add an address
write \n\nCompany Name\nAttention: John Smith\n123 Street Address\nSuite 255
write Anytown, CA 99556\n\n

Change the font
font name=Times New Roman,size=18,bold
paragraph center,shade=10,indent=.75,rightindent=.75
write sdOffice Example

#change the paragraph and font back to normal
paragraph normal
font normal
write \nHere is some text for a paragraph. To continue the write command\
 end it with a backslash (\) and continue writing on the next\
 line.
write \nHere is a table:

screenupdating off - helps on performance until turned back on
tables are defined, then written to, then formatted
table center,borders=grid,autofit
tablerow Invoice\tDate\tAmount
tablerow 12345\tOct 1,2000\t9,999.00
tablerow 34567\tNov 15, 2000\t12,121.21
tabledef row=1,backcolor=gray25
tabledef col=last,right

screenupdating on

write \n

Do some lists
write Bullet list:\n
bulletlist Bullet list item 1\nItem 2\nItem 3\nItem 4
write \nNumber list:\n
numberlist Number list item 1\nItem 2\nItem 3\nItem 4

add an image at certain point positions
units points
image file=*s_logo.tif,x=504,y=684,w=72,h=72

sdOffice – Page 65

do a print preview to show result
printpreview
leaveopen

sdOffice – Page 66

Sample: Word Mail Merge
File: s_word2.txt

Mail merge sample using existing Word document s_word2.doc, which
contains mail merge tags.

Startup Word

word

Watch what's going on (in practice, probably shouldn't be used,
at least until the end of the job, for performance reasons).

show

Create a new document with letter head to store mail merge results,
and open the base document, s_word2.doc in the sdOffice directory.
s_word2.doc will be the active document.

newdoc *s_ltrhd.dot
opendoc *s_word2.doc

Perform the mail merge substitutions.

mergefield CompanyName=Microsoft,Addr1=2111 Beach Blvd.,Addr2=""
mergefield City=Somewhere,State=XX,ZipCode=99999,Balance="4,500.00"

Copy the document, activate the new document, paste, and return
to s_word2.doc.

copydoc
activate Document1
pastedoc
activate s_word2.doc

Perform another set of substitutions

mergefield CompanyName=Oracle,Addr1=2111 Beach Blvd.,Addr2="Suite 1"
mergefield City=Somewhere,State=XX,ZipCode=99999,Balance="88,300.00"

Another copy, activate, paste. This time, add a page break before
pasting.
copydoc
activate Document1
newpage
pastedoc

Drop the s_word2.doc (don't wan't the user accidentally saving it)
activate s_word2.doc
closedoc
activate Document1

Show the result

sdOffice – Page 67

printpreview

leaveopen

sdOffice – Page 68

Colors in Word and Excel

sdOffice provides access to many internal color designations provided by Word and Excel. When
automating those applications, you can set color and background color elements to any of the
following words:

 black
 blue
 red
 green
 yellow
 white
 darkblue
 darkred
 darkyellow
 turquoise
 teal
 pink
 violet
 brightgreen
 gray25
 gray50

Excel, but not Word, also supports these colors:

 magenta
 cyan

The default color is black, and the default background color, where supported, is white.

sdOffice – Page 69

Paper Bins

Word and Excel printer selection can include a specification of the paper bin to use. The
following paper bin names are valid:

 upper
 lower
 middle
 manual
 envelope or env
 envmanual

sdOffice – Page 70

Paper Sizes

Word and Excel page setup commands support named paper size definitions. The following list
identifies the valid page size names. Any value other than these in a papersize=name option will
result in selection of Letter size.

 letter (8.5x11 inches)
 legal (8.5x14 inches)
 a3 (297x420 mm)
 a4 (210x297 mm)
 a5 (148x210 mm)
 b4 (250x354 mm)
 b5 (182x257 mm)
 tabloid (11x17 inches)
 env9 (3-7/8 x 8-7/8 inches)
 env10 (4-1/8 x 9-1/2 inches)
 env11 (4-1/2 x 10-3/8 inches)
 env12 (4-1/2 x 11 inches)
 env14 (5 x 11-1/2 inches
 envmonarch (3-7/8 x 7-1/2 inches)
 envb4 (250 x 353 mm)
 envb5 (176 x 250 mm)
 envb6 (176 x 125 mm)

sdOffice – Page 71

SendKeys Characters

The SendKeys command offered by some automation objects supports special keys and key
combinations, in addition to standard text. The following special keys are recognized as names
enclosed in braces:

Keystrokes
{backspace} or {bksp} or {bs}, {break}, {delete} or {del}, {enter} or ~, {esc}, {tab}

Cursor Movement
{down}, {end}, {home}, {left}, {pgdn}, {pgup}, {right}, {up}

Keyboard State
{capslock}, {insert} or {ins}, {scrolllock}

Function Keys
{Fn}, i.e. {F10}

Escaped Characters
Since some characters have special meaning, they must be enclosed in braces:
{+}, {^}, {%}, {~}, {(}, {)}, {{}, {}}, {[}, {]}

To repeat a key, append a space and a number after any key inside braces. For example {A 10}
will send 10 "A" keys, and {right 5} will send 5 right-arrows.

You can also imply a Shift, Control, or Alt combination by preceding the keystroke with +, ^, or %
characters, respectively. For example, to issue an "Alt-E, C" sequence to mimic a "copy"
function, use SendKeys %ec. The %e implies an Alt-E keystroke, and the letter c would select
the Copy option of a normal Windows application edit menu.

sdOffice – Page 72

Index

A
ADO Automation .. 20, 51
ADO Database Manipulation Sample... 51
Appointments ..34, 58, 61
C
Colors... 67
Configuration.. 12
Contacts..34, 59, 62
Contents... 3
D
Database automation ... 20
DDE Interface... 17
E
Email ...22, 34, 57, 60
Email,via MAPI... 22, 57
Email,via Outlook ... 34, 60
Excel Automation ..24, 52, 53, 54, 56
Excel Calculation Engine Sample .. 52
Excel Charting Sample... 56
Excel Formatting Sample ... 53
Excel Report Sample ... 54
L
Licensing.. 5
M
MAPI Automation ... 22
MAPI Email Submission Sample.. 57
O
ODBC... 20
OLE DB.. 20
Outlook Appointment Add Sample ... 58
Outlook Appointments.. 34
Outlook Contacts.. 34
Outlook Email... 34
Outlook Email Sample.. 60
Outlook Read Contacts Sample ... 62
Outlook Return Appointments Sample ... 61
Outlook Tasks .. 34
P
Paper Bins.. 68
Paper Sizes.. 69
Port selection ... 12
S
Samples50, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65

sdOffice – Page 73

Samples,Excel Calculation Engine... 52
Samples,Excel Charting... 56
Samples,Excel Formatting ... 53
Samples,Excel Report.. 54
Samples,MAPI Email Submission .. 57
Samples,Outlook Add Appointment ... 58
Samples,Outlook Add Contact ... 59
Samples,Outlook Email .. 60
Samples,Outlook Read Appointments ... 61
Samples,Outlook Read Contacts ... 62
Samples,Word Document Formatting .. 63
Samples,Word Mail Merge ... 65
sdRun Interfaces .. 18
Security .. 12
SendKeys Characters .. 70
Server Configuration .. 12
Socket Interface ... 7
Startup options ... 12
T
Tasks ... 34
TCP/IP server... 10
V
Visual PRO/5 and ProvideX Interface .. 14
W
Word Automation ..41, 63, 65
Word Document Formatting Sample .. 63
Word Mail Merge Sample... 65

	Table of Contents
	Overview
	Installation and Licensing
	Socket Interface
	TCP/IP server
	Server Configuration
	BBx and ProvideX Interface
	DDE Interface
	sdRun Interfaces
	ADO Automation
	MAPI Automation
	Microsoft Excel Automation
	Microsoft Outlook Automation
	Microsoft Word Automation
	About the Samples
	Sample: ADO Database Manipulation
	Sample: Excel Calculation Engine
	Sample: Excel Formatting
	Sample: Excel Report
	Sample: Excel Charting
	Sample: MAPI email submission
	Sample: Outlook Add Appointment
	Sample: Outlook Add Contact
	Sample: Outlook Email
	Sample: Outlook Read Appointments
	Sample: Outlook Read Contacts
	Sample: Word Document Formatting
	Sample: Word Mail Merge
	Colors in Word and Excel
	Paper Bins
	Paper Sizes
	SendKeys Characters
	Index

